Abstract: Deploying high-performance object detectors on TinyML platforms poses significant challenges due to tight hardware constraints and the modular complexity of modern detection pipelines. Neural Architecture Search (NAS) offers a path toward automation, but existing methods either restrict optimization to individual modules, sacrificing cross-module synergy, or require global searches that are computationally intractable. We propose ELASTIC (Efficient Once for All Iterative Search for Object Detection on Microcontrollers), a unified, hardware-aware NAS framework that alternates optimization across modules (e.g., backbone, neck, and head) in a cyclic fashion. ELASTIC introduces a novel Population Passthrough mechanism in evolutionary search that retains high-quality candidates between search stages, yielding faster convergence, up to an 8% final mAP gain, and eliminates search instability observed without population passthrough.